

Environmental systems and societies Standard level Paper 2

Monday 8 Ma	ay 2017	(morning)
-------------	---------	-----------

 Candidate session number						

Instructions to candidates

2 hours

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [65 marks].

2217-6303 © International Baccalaureate Organization 2017

24 pages

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. The concentration of DDT at different trophic levels of the food chain.

Figure 1: Levels of concentration of DDT in food chain

[Source: © International Baccalaureate Organization, 2017]

(This question continues on the following page)

(Question	n 1 continued)	
(a)	State the main source of energy for the food chain in Figure 1.	[1]
(b)	State the trophic level labelled X in Figure 1 .	[1]
(c)	Identify one use of DDT that has led to its presence in the environment.	[1]
(d)	With reference to the concepts of bioaccumulation and biomagnification, outline how the concentration of DDT has changed along the food chain.	[2]

(This question continues on page 5)

Please do not write on this page.

Answers written on this page will not be marked.

https://xtremepape.rs/

(Question 1 continued from page 3)

(e)	(i)	State the relationship between large and small fish in Figure 1 .	[1]
	(ii)	Outline how this relationship may be of benefit to the populations of both species.	[2]

2. Water stress is the total annual extraction of water as a proportion of the renewable supply in a given area. If the extraction represents 40 % or more of the available supply it is described as a high risk area.

[Source: World Resources Institute, http://www.wri.org/resources/charts-graphs/portion-agricultural-production-under-high-or-extremely-high-stress. Used with permission.]

(a) State the crop that is under the greatest water stress. [1]

(This question continues on the following page)

(b) I	dentity							
(c) I	dentify	three fa	actors th	at may l	ead to an	increase in	water stress.	
(c) I	dentify	three fa	actors th	at may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	at may l	ead to an	increase in	water stress.	
(c) I	dentify	three fa	actors th	at may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	
(c) I	dentify	three fa	actors th	nat may l	ead to an	increase in	water stress	

3. There are concerns that increased carbon dioxide (CO₂) emissions are leading to changes in the global climate.

Figure 3: CO₂ emissions for select countries in 2007 and 2030 (Projected)

[Source: World Resources Institute, http://www.wri.org/resources/charts-graphs/capita-co2-emissions-select-major-emitters-2007-and-2030-projected. Used with permission.]

(a)	Calculate the projected percentage increase from 2007 to 2030 in ${\rm CO_2}$ emissions for Russia.	[1]
(b)	Outline how CO ₂ emissions may cause a change in the global climate.	[2]

(This question continues on the following page)

Question	3 C	ontini	(beu
----------	-----	--------	------

(c) Identify two possible reasons for the projected change in CO_2 emissions for China.	[2]
(d) Identify one reduction strategy that the United States might use to achieve its projected change in CO ₂ emissions.	[1]
(e) Identify one adaptation strategy that could be used to reduce the impacts of climate change.	[1]

(This question continues on the following page)

(Question 3 continued)

(f)	Explain how the ability to implement mitigation and adaptation strategies may vary from one country to another.	[4]

Section B

Answer two questions. Answers must be written within the answer boxes provided.

4. (a) Identify **four** ways in which solar energy reaching vegetation may be lost from an ecosystem before it contributes to the biomass of herbivores.

[4]

(b) Suggest a series of procedures that could be used to estimate the net productivity of an insect population in $kg m^{-2} yr^{-1}$.

[7]

(c) To what extent are the concepts of *net productivity* and *natural income* useful in managing the sustainable harvesting of named resources from natural ecosystems?

[9]

5. (a) Identify **four** characteristics of ecosystems that contribute to their resilience.

[4]

(b) Explain how positive feedback mechanisms may influence the equilibrium of an aquatic ecosystem during the process of eutrophication.

[7]

- (c) Pollution management strategies may be aimed at either **preventing** the production of pollutants or **limiting** their release into ecosystems.
 - With reference to **either** acid deposition **or** eutrophication, evaluate the relative efficiency of these two approaches to management.

[9]

- **6.** (a) The soil system includes storages of inorganic nutrients.
 - (i) Identify **two** inputs to these storages.

[2]

(ii) Identify **two** outputs from these storages.

[2]

- (b) Solid domestic waste may contain non-biodegradable material and toxins that have the potential to reduce the fertility of soils.
 - Explain how strategies for the management of this waste may help to preserve soil fertility.

[7]

- (c) The provision of food resources and assimilation of wastes are two key factors of the environment that determine its carrying capacity for a given species.
 - To what extent does the human production of food and waste each influence the carrying capacity for human populations?

[9]

7.	(a)	Identify four reasons why the genetic diversity of a population may change over time.	[4]
	(b)	Explain how changes in the concentration of stratospheric and tropospheric ozone in the atmosphere can affect global biodiversity.	[7]
	(c)	Environmental value systems differ in how they view the importance of biodiversity and this could influence a community's approach to conservation.	
		Discuss how these different perspectives, including your own, may influence approaches to conservation.	[9]

